Specific Absorbed Fractions of Internal Photon and Electron Emitters in a Human Voxel-based Phantom: A Monte Carlo Study
نویسندگان
چکیده
The specific absorbed fraction (SAF) of energy is an essential element of internal dose assessment. Here reported a set of SAFs calculated for selected organs of a human voxel-based phantom. The Monte Carlo transport code GATE version 6.1 was used to simulate monoenergetic photons and electrons with energies ranging from 10 keV to 2 MeV. The particles were emitted from three source organs: kidneys, liver, and spleen. SAFs were calculated for three target regions in the body (kidneys, liver, and spleen) and compared with the results obtained using the MCNP4B and GATE/GEANT4 Monte Carlo codes. For most photon energies, the self-irradiation is higher, and the cross-irradiation is lower in the GATE results compared to the MCNP4B. The results show generally good agreement for photons and high-energy electrons with discrepancies within - 2% ±3%. Nevertheless, significant differences were found for cross-irradiation of photons of lower energy and electrons of higher energy due to statistical uncertainties larger than 10%. The comparisons of the SAF values for the human voxel phantom do not show significant differences, and the results also demonstrated the usefulness and applicability of GATE Monte Carlo package for voxel level dose calculations in nonuniform media. The present SAFs calculation for the Zubal voxel phantom is validated by the intercomparison of the results obtained by other Monte Carlo codes.
منابع مشابه
Estimation of Photon Specific Absorbed Fractions in Digimouse Voxel Phantom using Monte Carlo Simulation Code FLUKA
Background: Most preclinical studies are carried out on mice. For internal dose assessment of a mouse, specific absorbed fraction (SAF) values play an important role. In most studies, SAF values are estimated using older standard human organ compositions and values for limited source target pairs.Objective: SAF values for monoenergetic photons of energies 15, 50, 100, 500, 1000 and 4000 keV...
متن کاملEvaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA
Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...
متن کاملDevelopment of Prototype Iranian male pelvic phantom for internal dosimetry
Introduction: Existing phantoms have been constructed based on Caucasian, non-Caucasian and race-specific datasets. According to previous studies made efforts to present Korean- specific phantoms and Chinese female phantom based on CVH dataset due to compare the resulting internal dosimetry with the Caucasian based data showed possible racial difference in human anatomy between ...
متن کاملThorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation
Background: This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation. Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...
متن کاملThe Monte Carlo Assessment of Photon Organ Doses from 222Rn Progeny in Adult ORNL Phantom
Introduction The potential hazards posed by exposure to radiation from radon have been of great concern worldwide, since it is especially associated with increased risk of lung cancer. Some radioisotopes of radon progeny deposited in the human lungs emit β particles followed by the γ rays. While γ rays are comparatively less damaging to the respiratory system than α and β particles, it is the p...
متن کامل